Optimal Policy Learning Under Spatial Dependence With Applications to Groundwater in Wisconsin

Xindi Lin", Christopher Zahaskyi, Hyunseung KangJr
WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

TDepartment of Statistics, University of Wisconsin--Madison, & Department of Geoscience, University of Wisconsin--Madison

l Introduction

l Simulation Studies

 Motivation: Data-Driven, Cost-Efficient Groundwater Policy e Simulation Setting
_AFF- ; - - - ] ] Boxplot of Absolute Deviation Between Predicted and True MRTP
o A necessary trade-off: increasing water well depth improves groundwater quality but o Let P = [0,1]% and & be a uniform 50 X 50 grid on 9.
increases installation costs. N o . .
o (Xi,...,Xs) are i.i.d. normally distributed. o

o Goal: Determine the minimum well depth required to meet the public health standards for
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contaminants in groundwater. o A|X,...,Xs: beta distributed with logistic mean model. : o 3 . g
g ’ i o
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o Method: Spatial Minimum Resource Threshold Policy (spMRTP) o U(s): gaussian process with range = 0.2. . 0 g ' | '
: . : : . L . . : 1 0.4
o A Gaussian process model for spatial dependence of contaminants in groundwater. o Y|A,Xj, ..., Xs5: normal distribution with non-linear mean. E l I
S
o Policy learning via risk minimization with a novel, doubly robust loss function. e Completing Methods S
o Computational efficiency via the Vecchia approximation. o Indirect method: 0.2
o Application: Nitrates in Wisconsin Groundwater O(s) = inf 4 {a | i{X(s),a} + E [US 1{U,} e 5] } — ‘
° Non-spatial MRTP: 6(s) = inf,c, {a|A{X(s),a} }.
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l Framework e Implementation Quantiles
. o Tuning parameters are selected via cross-fitting. method B3 Doubly Robust 5 indirect 3 Non-spata
* Notations
) o Use generalized linear re gression {o estimate p(a | x) . Figure: boxplot of absolute error between the predicted spMRTP and true spMRTP. Doubly
° & = {Sl, 53y e ens Sn} C Y C R7:setof spatial locations where n observations are measured. robust : our doubly robust estimation. Indirect: indirect method using outcome regression. Non-
. . . o Use linear re gres s10n to estimate M(Xa a) . spatial: indirect method that ignores the spatial dependency term U(s).
o Y. observed concentration of contaminate at location s
o A, € & C R: observed well depth at location s
o Y /(a): potential concentration of contaminants at location s and deptha € &f C R
o X;: measured spatial covariates at location s l Application: Nitrate in Wisconsin Groundwater o Required well depth in Wisconsin.
o U, : unmeasured spatial covariates at location s
* Assumptions e Nitrate remains the most widespread groundwater contaminant in Wisconsin.
o Causal consistency: Y, = Y (A) almost surely. e Millions of dollars!®! are spent to meet the 10mg/L public health standard.
o Strong ignorability: A; L Y(a) | X;and p(a | X; = x) > Oforall a, x. e We aim to estimate minimum well depth to meet the 10mg/L health standard.
o Spatial unconfoundedness: U L A; | X;. * We use publicly available groundwater nitrate measurements and environmental
o Additive, semiparametric, spatial structural model: Y, = u(X,,A,) + U, + €. variables that are hypothesized to predict nitrate contamination.
o u(X,A): nonparametric, monotonically decreasing function w.r.t. A for all X.
o U, mean-zero, Gaussian process,i.e., E[U | A, X,] =0 SUomn o e e
. . . . o Nitrate measurementst!! taken o Daily average precipitation"! at each
© €5 mean-zero, i.i.d. measurement error, i.e., £l [Ay, X, Us] = 0 between 2014 and 2024 in Wisconsin. site from 2014 to 2024 (Total: 18,880 o Land cover!'?! in Wisconsin.
o Definition of spMRTP 60*(x; ) sites)
o J:target threshold for the outcome (e.g., nitrate concentration is less than =10 mg/L)
o Given measured covariates at new location s, (i.e., x, ), the spMRTP is defined as o o o e
. mm/day . Corn
0*(x, ) = argmin a, such that E[Y, (a) |Xs0] + U, < I . . . : ” 5N Developed
aed . Forest
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l Identification and Estimation
Identification
o Seven levels of soil drainage!*. o Well depth!'! in Wisconsin. o Concentrated animal feeding operations!!

e Under assumptions above, we have the following 1dentification results
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o U, can be approximated by conditional mean E[U, [{ U} es] o Sol Drainage Level o o
Zz;yr.zoor "ot 0o Ln(CAFO+1)
Doubly Robust Nonparametric Estimation
oderately we 500
e Assume @ € ® where O is a function class defined on & — . = N " 250
. . . . Excessive ° 44N
e STEP 1: Estimation of nuisance parameters
o Estimate i and p(a|x) —> Estimate covariance function with Y — [i—> Estimate h Sl e N o
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e STEP 2: Doubly robust risk minimization
n { y ~ (X 0 ( )) E[ U ( ) | CSJ] } K ( A 0 ( )) 2 References: [1] Groundwater Retrieval Network (GRN). [2] Cropland Data Layer (CDL). [3] United States Geological Survey (USGS). [4] Soil Survey Geographic Database (SSURGO). [3]
é = arg min Z g — /,'i(X H(S-)) — E [U ( S ) | S ] — i — M2 VRS Si O\ Si Wisconsin Pollutant Discharge Elimination System (WPDES). [6] Estimates of Recoverable and Non-Recoverable Manure Nutrients Based on the Census of Agriculture, USDA. [6]
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